
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 33, No. 2, February 2024, pp. 1283~1292 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v33.i2.pp1283-1292      1283 

 

Journal homepage: http://ijeecs.iaescore.com 

Integrating random forest model and internet of things-based 

sensor for smart poultry farm monitoring system 
 

 

Imam Fahrurrozi1,2, Wahyono1, Yunita Sari1, Anny Kartika Sari1, Ilona Usuman1, Bambang Ariyadi3 
1Department of Computer Science and Electronics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, 

Yogyakarta, Indonesia 
2Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia 

3Department of Animal Production, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 11, 2023 

Revised Dec 13, 2023 

Accepted Dec 25, 2023 

 

 The global poultry industry has encountered growing concerns related to 

foodborne illnesses, misuse of antibiotics, and environmental impacts. To 

tackle these issues, this study aims to develop an intelligent poultry farm 
with real-time environmental monitoring and predictive models. The 

primary objective is to combine a machine learning-based prediction model 

with internet of things (IoT) devices to gather and analyze environmental 

data, such as temperature, humidity, and ammonia levels, to forecast the 
conditions within poultry houses. These sensor data and additional 

information, such as feed consumption, water consumption, poultry weight, 

capacity, and poultry house dimensions will serve as inputs for supervised 

machine learning models. Among these models, the proposed random forest 
(RF) model, when augmented with timestamp features, achieves the highest 

accuracy rate of 96.665%, surpassing other models such as logistic 

regression (LR), k-nearest neighbor (KNN), decision tree (DT), adaptive 

boosting (AdaBoost), extreme gradient boosting (XGBoost), support vector 
machine (SVM), and multi-layer perceptron (MLP) in identifying poultry 

house conditions. Additionally, this study demonstrates how the trained 

model can be effectively applied in a web-based monitoring system, 

delivering real-time data to farmers for well-informed decision-making and 
ultimately enhancing productivity in smart poultry farming. 
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1. INTRODUCTION 

Modern technology, including internet of things (IoT), has improved farming in various fields, 

especially agriculture [1]–[5]. IoT has been especially beneficial in poultry farming, enabling comprehensive 

monitoring and decision-making through sensors, cloud technology, and innovations [6]–[10]. This allows 

farmers to access real-time data about their poultry houses via sensors and gadgets, ultimately improving the 

reliability and adaptability of farming systems [11]–[13]. Furthermore, IoT's continued exploration and 

adoption in agriculture signify ongoing advancements in optimizing farm management practices. 

Controlling temperature, humidity, and ammonia levels in broiler chicken production aims to create 

healthier chickens that thrive and adapt to their environment. Maintaining the right temperature is essential 

for the comfort and well-being of broiler chickens, ensuring their health from when they are placed in the 

https://creativecommons.org/licenses/by-sa/4.0/
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house until they are harvested [14]–[17]. Inadequate humidity can cause dehydration and respiratory 

problems [18], [19], while excessive humidity can lead to heat prostration [20]. Additionally, monitoring 

ammonia levels in the broiler chicken house is crucial, as it can stem from gases produced by chicken waste 

in the coop [21]–[23]. IoT technology can be incorporated into a monitoring system to gain insights into  

a poultry house's temperature, humidity, and ammonia levels. 

Previous studies have demonstrated the successful application of IoT technology in poultry farming, 

yielding noteworthy outcomes. Hambali et al. [24] focus on leveraging the IoT and wireless sensor networks 

(WSN) to automate the monitoring and management of key factors like temperature, humidity, air quality, 

and food feeding in poultry farms, aiming to improve chicken health and reduce mortality rates.  

By implementing a prototype system that initiates corrective actions when parameters exceed threshold 

values, along with automatic alert notifications through SMS, Email, and WhatsApp, the study seeks to 

enhance poultry productivity and overall farm efficiency through machine learning and IoT technologies. 

Zheng et al. [25] focus on developing an information management system for poultry farming, integrating 

IoT technology to collect, transmit, store, and manage data, ultimately enhancing production efficiency and 

forming a comprehensive data chain. The system supports production management and includes an office 

management module with disease detection capabilities, laying the groundwork for potential future 

intelligent poultry farming management systems based on cloud services and big data technology.  

Machine learning-based prediction models have found application in various domains, including 

their use in identifying human loitering through vision sensor technology within surveillance systems [26],  

to predict gas-fired boiler flue gas oxygen content [27] and human activity recognition [28], [29]. Moreover, 

the use of IoT sensor data as input for machine learning models has been previously utilized and shown 

favorable results in predicting the environmental conditions within poultry houses. Using machine learning, 

Küçüktopcu and Cemek [30] aimed to create an efficient model for predicting ammonia (NH3) concentration 

in poultry farms. Four different models, including multi-layer perceptron (MLP), adaptive neuro-fuzzy 

inference systems with grid partitioning (ANFIS-GP) and subtractive clustering (ANFIS-SC), and multiple 

linear regression analysis (MLR), were applied using easily obtainable climatic variables and litter quality 

properties. The results revealed that the ANFIS-SC model, utilizing air temperature, air relative humidity, 

and airspeed as inputs, performed the best in predicting NH3 concentration, demonstrating its potential as  

a valuable tool for rapid and accurate estimation in poultry farm management. Liu et al. [31] explored the use 

of machine learning models, including extreme gradient boosting (XGBoost), support vector regression 

(SVR), and back-propagation neural networks (BPNN), to predict odor concentration in laying hen houses. 

The XGBoost model demonstrated the highest predictive accuracy (R2 = 0.88), indicating its potential for 

timely and moderately accurate odor monitoring. 

Nevertheless, there needs to be more research regarding the application of random forest,  

a supervised machine learning algorithm, for poultry house detection using IoT sensor data. Consequently, 

this study proposes a predictive model that employs random forest to forecast poultry house conditions based 

on IoT sensor data, encompassing factors such as temperature, humidity, and ammonia levels. Additionally, 

we integrate supplementary data, including feed and water intake, broiler weight, allocation capacity, and 

house size. We introduce timestamp features as additional attributes for the random forest model to enhance 

prediction accuracy. Moreover, by incorporating this proposed predictive model into a web-based system, 

farmers can improve their decision-making processes and optimize their production strategies. 

 

 

2. METHOD 

The model illustrated in Figure 1 utilizes IoT sensors such as temperature, humidity, and ammonia 

levels to forecast the conditions within the poultry house, determining whether they are normal or abnormal. 

We removed inconsistent entries through preprocessing and resampled the data at 5-minute intervals to create 

the time-series dataset. The dataset collected underwent a feature extraction stage, which involved the 

addition of timestamp features. We employed the random forest algorithm for prediction purposes and 

evaluated the model's effectiveness by comparing it to alternative machine learning models. The model 

assessment followed a hold-out method, where the dataset was split into training and testing sets in a 70:30 

ratio. Finally, the trained model was integrated into a web-based application at the deployment stage, 

enhancing accessibility for end users. 

 

2.1.  Dataset 

In our study, we designed an IoT sensor device for monitoring temperature, humidity, and ammonia 

levels within the broiler house. This IoT device comprises a Mappi32 microcontroller, DHT22 for recording 

humidity and temperature, and MQ137 as a sensor for measuring ammonia levels. Figure 2 shows IoT 

devices installed inside the broiler house to collect environmental data, including temperature, humidity, and 
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ammonia levels, at five-minute intervals throughout a production season, spanning approximately one month 

starting from January 5, 2023. The device was set up in a broiler house in the Sleman District, Yogyakarta 

Province, Indonesia. 

 

 

 
 

Figure 1. Proposed ML model to detect broiler house conditions 

 

 

 
 

Figure 2. IoT sensor setup installation inside broiler house 

 

 

The IoT device gathers sensor data, sends this information to a REST API on the server side, and 

stores it in a MySQL database. The farmer manually entered supplementary data, including feed and water 

intake, broiler weight, allocation capacity, and house size. These manually inputted data were then integrated 

with the IoT dataset for subsequent analysis. Finally, our dataset contains a total of 9196 records, with 

average values of 26.86 for temperature (celsius), 83.46 for humidity (%), 6.40 for ammonia levels (ppm), 

659.99 for feed intake (kg), 346 for water intake (liter), 801.64 for broiler weight (gram), 8000 for allocation 

capacity (broilers quantity), and 336 for house size (square meter). 

 

2.2.  Feature extraction 

The sensor data collected included temperature, humidity, and ammonia levels. In contrast, the 

manually inputted data by the farmers encompassed feed intake, water intake, broiler weight, allocation 

capacity, and broiler house size. These two datasets were merged into a unified dataset, each entry 

accompanied by date and time information at 5-minute intervals. The proposed timestamp features, such as 

the "hour of the day" and "part of the day," were derived from the date and time column. The "part of the 

day" categories were defined as early morning (4 < x ≤ 8), morning (8 < x ≤ 12), afternoon (12 < x ≤ 16), 

evening (16 < x ≤ 20), night (20 < x ≤ 24), and late night (x ≤ 4). We applied label encoding, representing 

"early morning" as 0, "morning" as 1, "afternoon" as 2, "evening" as 3, "night" as 4, and "late night" as 5. 
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The initial processing phase is crucial for converting the gathered dataset into an input matrix X and 

an output vector Y. This transformation allows conventional machine learning models to recognize patterns 

and make predictions. With a dataset consisting of m distinct sensor data readings, hour of the day (h), part of 

the day (p), and a total of 10 features, the input matrix X can be represented as a [m × 10] matrix. 

 

𝑋 =

[
 
 
 
 

𝑡𝑒𝑚𝑝1 ℎ𝑢𝑚1 𝑎𝑚𝑚𝑜𝑛𝑖𝑎1 𝑓𝑒𝑒𝑑1 … ℎ1 𝑝1

𝑡𝑒𝑚𝑝2 ℎ𝑢𝑚2 𝑎𝑚𝑚𝑜𝑛𝑖𝑎2 𝑓𝑒𝑒𝑑2 … ℎ2 𝑝2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑡𝑒𝑚𝑝𝑚−1 ℎ𝑢𝑚𝑚−1 𝑎𝑚𝑚𝑜𝑛𝑖𝑎𝑚−1 𝑓𝑒𝑒𝑑𝑚−1 … ℎ𝑚−1 𝑝𝑚−1

𝑡𝑒𝑚𝑝𝑚 ℎ𝑢𝑚𝑚 𝑎𝑚𝑚𝑜𝑛𝑖𝑎𝑚 𝑓𝑒𝑒𝑑𝑚 … ℎ𝑚 𝑝𝑚 ]
 
 
 
 

 (1) 

 

Each instance corresponds to a broiler house's condition, categorized as either "normal" or "abnormal," 

represented as 𝑦𝑚. In the end, the target output Y was organized as a [m × 1] vector. 

 

𝑌 =

[
 
 
 
 

𝑦1

𝑦2

⋮
𝑦𝑚−1

𝑦𝑚 ]
 
 
 
 

. (2) 

 

We conducted interviews with farmers to determine the criteria for abnormal conditions, defining it 

as a situation where the number of broiler deaths >=10 during the hour of the day. Subsequently, we labeled 

y as "normal" (when broiler deaths are < 10) and "abnormal" (when broiler deaths are >= 10). As mentioned 

earlier, we applied label encoding, representing labels "normal" as 0 and "abnormal" as 1. 

 

2.3.  Random forest 

The random forest (RF) algorithm is a classification method that combines decision trees [32]. 

Previous research has shown that using a randomization approach, such as bagging or the random space 

method, can improve the performance of RF. This randomization is achieved using bootstrapped sampling of 

the original data and randomly selecting a subset of features at each node to determine the best split. The 

process of generating each tree in an RF model is described in Algorithm 1. 

 

Algorithm 1. Random forest 
1 Input : The dataset used for training D, ensemble size denoted as T, and 

subspace dimension referred to as d 

2 Output : Consensus decision derived from the majority of tree models 

3 for t = 1 to T do 

4  Create a bootstrapped sample 𝐷𝑡 from D 

5  Randomly choose d features and reduce the dimensionality of dataset 𝐷𝑡 

accordingly 

6  Develop a tree model through training 𝑀𝑡 on 𝐷𝑡 

7  Divide the dataset based on the most suitable feature among the selected d 

features. 

8  Allow the tree 𝑀𝑡 to grow without applying pruning techniques 

9 End 

 

The random forest technique involves the creation of individual decision trees through the random 

selection of a subset of attributes at each node for making splits. The procedure functions as follows: given a 

training dataset (D), the quantity of trees (T) within the model, a subspace dimension (d), and the available 

features (F), a bootstrapped sample (𝐷𝑡) is derived from the original dataset (D). This sample incorporates 

certain records from the original dataset multiple times and omits others. Subsequently, a subset (d) of 

attributes is randomly picked from the bootstrapped sample (𝐷𝑡) to be considered candidates for splits at each 

node. The decision tree classifier is trained on this bootstrapped sample (𝐷𝑡) along with the selected attributes 

(d), and it is grown to its maximum extent without pruning. This process is iterated for all trees within the 

forest. During the classification phase, each tree votes, and the most prevalent class is designated as the 

predicted outcome. 

Random forests (RFs) can tackle various predicaments encountered by decision trees, such as 

averting overfitting and minimizing variance. The random forest model was trained to comprehend two 

classes (normal or abnormal) using the prepared training dataset in this investigation. The predictive results 

of this model were matched against the testing set to assess its accuracy. The input attributes in this study 

consist of sensor data such as temperature, humidity, ammonia, feed, water, weight, allocation, area size, 
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hour of the day, and part of the day. At the same time, the output pertains to poultry farm condition types. 

The random forest model is composed of 100 trees (T) and ten attributes (F), and it employs the Gini index to 

make splits with the reduced number of attributes (d). 

Machine learning models were employed to categorize diverse poultry house conditions. These 

classification models were implemented in Python using XGBoost and Scikit-learn, adopting the default 

parameters provided by Scikit-learn [33]. The models were evaluated through a hold-out method with a 70:30 

ratio for training and testing. Finally, their performance was assessed based on accuracy, precision, recall, 

specificity, and F1-score metrics.  

 

 

3. RESULTS AND DISCUSSION 

This section addresses the suggested model's effectiveness and timestamp features' influence on its 

performance. Additionally, we showcase the model's practicality by implementing it within a web-based 

monitoring system. This implementation underscores the model's versatility and highlights its potential for 

seamless integration into existing monitoring infrastructures, thereby enhancing its applicability in practical 

settings. 

 

3.1.  Performance of machine learning models 

In this study, supervised machine learning techniques were employed to anticipate the environmental 

conditions of poultry farms as either normal or abnormal. This was achieved using input data collected by an 

IoT sensor device and other data. The focus was on evaluating the accuracy of these machine-learning models. 

A comparison was made between a model using a random forest combined with additional timestamp features 

and other classification models (without additional timestamp features) for predicting poultry farm 

environmental conditions. Various machine learning algorithms, including logistic regression (LR), K-nearest 

neighbor (KNN), decision tree (DT), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), 

support vector machine (SVM), and multi-layer perceptron (MLP), were employed as classification models. 

The outcomes presented in Table 1 demonstrate the diverse model performances regarding accuracy, 

precision, recall, and f-score. The results indicated that the proposed model exhibited superior performance to 

the alternative models, achieving improvements of up to 96.665% in accuracy, 94.263% in precision, 

94.793% in specificity, 94.793% in recall, and 94.525% in f-score. 

 

 

Table 1. Performance evaluation results 
Model Accuracy Precision Specificity Recall F1 Score 

Logistic regression 81.406 40.703 50.000 50.000 44.875 

KNN 84.487 77.908 63.022 63.022 65.978 

Decision tree 83.762 73.707 65.134 65.134 67.653 

AdaBoost 81.877 69.589 54.651 54.651 54.315 

XGBoost 85.067 78.759 65.033 65.033 68.284 

SVM 81.623 73.372 51.111 51.111 47.353 

MLP 83.870 78.590 59.711 59.711 61.857 

Proposed random forest + timestamps feature 96.665 94.263 94.793 94.793 94.525 

 

 

3.2.  Impact of timestamps feature on model performance 

In this study, we focused on investigating how the inclusion of a timestamp feature influences the 

accuracy of classification models. Our observations indicate that utilizing these methods led to an 

enhancement in model accuracy. Upon introducing timestamp features such as the hour of the day and parts 

of the day, the classification models displayed an increase of approximately 8.571% compared to 

conventional machine learning models. Detailed insights into the influence of the timestamp feature on 

classification accuracy are provided in Figure 3. Across our dataset, incorporating the timestamp feature 

consistently elevated the accuracy of all classification models. To sum up, the integration of timestamp 

features into classification models has the potential to enhance overall model accuracy. 

 

3.3.  Comparison with previous studies 

In this section, we performed a comparative examination of our study and previous research that 

concentrated on monitoring systems utilizing IoT and the detection of broiler house conditions. Within an IoT-

based monitoring system framework, Hambali et al. [24] introduced a concept for a smart poultry farm in 

Brunei that utilizes IoT technology. Data from sensors measuring temperature, humidity, air quality, and food 

feeding were gathered, revealing that implementing IoT and mobile technology in poultry farming can effectively 
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manage environmental conditions and decrease poultry farm mortality rates in Brunei. Zheng et al. [25] 

introduced the development and deployment of a poultry farming information management system using a 

cloud database. They employed IoT sensors within contemporary Chinese poultry farms to gather data on 

environmental parameters like temperature, humidity, light intensity, and gas levels within the poultry 

houses. Finally, Mondol et al. [34] introduced an IoT-based smart weather monitoring system tailored for 

poultry farms in Bangladesh, employing temperature sensors to enhance farm management and efficiency.  

 

 

 
 

Figure 3. Impact of timestamp feature on model prediction accuracy 

 

 

Incorporating IoT technology and predictive models has been put into practice and yielded notable 

outcomes. Küçüktopcu and Cemek [30] aimed to develop a precise and cost-effective model for predicting 

ammonia (NH3) concentration in poultry farms using machine learning techniques. Among the models 

tested, the ANFIS-SC model, utilizing inputs such as air temperature, air relative humidity, and airspeed, 

demonstrated the highest accuracy in estimating NH3 concentration, making it a promising tool for rapidly 

and accurately assessing NH3 levels in poultry farm management. Liu et al. [31] investigated the application 

of machine learning techniques, such as extreme gradient boosting (XGBoost), support vector regression 

(SVR), and back-propagation neural networks (BPNN), to forecast odor levels within laying hen enclosures. 

The findings showed that the XGBoost model exhibited the most substantial predictive capability (R2 = 

0.88), suggesting its suitability for timely and reasonably accurate odor surveillance.  

Our study introduced a novel approach for assessing poultry house conditions by integrating IoT 

technology with machine learning models. Distinguishing from earlier studies, our method employed IoT 

sensor data as input and harnessed the power of the random forest algorithm to enhance predictive accuracy. 

Moreover, we successfully deployed our trained model within web-based applications, offering farmers real-

time insights into poultry house conditions. 

 

3.4.  Practical application 
This study aims to develop a web-based system that employs a machine learning model to forecast 

the environmental status of poultry farms precisely and aid in managerial decision-making. Prior 

investigations have indicated the utility of such a system in online traceability [35], inventory management [36], 

and disease prognosis [37], [38]. A machine learning-based predictive model makes it possible to accurately 

discern whether the conditions are normal or unusual. The web-based monitoring system was constructed 

using the PHP programming language and a MySQL database on the server side. Python was employed for 

the REST API and machine learning model. The predictive model was established using the Flask web 

framework and the Scikit-learn library on the server side. This model was employed to identify the condition 

of the poultry houses. We designed an IoT sensor device that utilizes an MQ137 sensor to measure ammonia 

levels (with a range from 5 to 500 ppm), a DHT22 sensor to monitor temperature and humidity levels (with a 

temperature range of -40 to +125 degrees Celsius, and a humidity range from 0 to 100%). We employed the 

Mappi32 microcontroller, as depicted in Figure 4. The trained model was employed to forecast whether the 

environmental conditions were normal or abnormal. The outcomes were then presented to the management 

through a web-based interface, as shown in Figure 5. 
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Figure 4. IoT sensor device 

 

 

 
 

Figure 5. Web-based smart poultry farm monitoring system 

 

 

4. CONCLUSION 

Farmers commonly engage in manual assessment of the state of poultry farms. The manual 

evaluation of poultry farm conditions demands a significant amount of time. Conversely, using information 

technology simplifies farmers' tasks by expediting the decision-making procedure. Recent progress in 

monitoring systems for poultry farms has emerged through the integration of machine learning algorithms. In 

this study, a monitoring system was developed for poultry farms, utilizing a machine learning prediction 

model to anticipate environmental conditions. The proposed RF model and additional timestamp features 

successfully determined the farm's state using IoT-based sensors. It underwent testing across diverse 

scenarios, encompassing both normal and abnormal conditions. The outcomes indicated the superior 

performance of the proposed model in comparison to others, such as MLP, LR, KNN, DT, SVM, XGBoost, 

and AdaBoost, showcasing improvements of up to 96.665%, 94.263%, 94.793%, 94.793%, and 94.525% 

concerning accuracy, precision, specificity, recall, and f-score, respectively. The trained model could be 

seamlessly integrated into the server side, receiving data from IoT devices to predict environmental 

conditions. This data could be leveraged to enhance decision-making for farmers, optimizing their production 

strategies. In forthcoming endeavors, the effectiveness of IoT sensors will be assessed across varied 

conditions. The potential for comparing the model's performance with alternative forecasting methods to 

predict future poultry farm conditions remains possible. These future endeavors aim to enhance the model's 

adaptability and contribute to broader advancements in precision agriculture and farm management practices. 
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